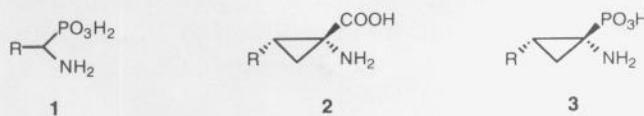


Preparation of enantiomerically pure (1*S*,2*S*)-1-aminocyclopropanephosphonic acid from methylcyclopropanone acetal via spirophosphonate intermediates

Antoine Fadel* and Nicolas Tesson

Laboratoire des Carbocycles (Associé au CNRS), Institut de Chimie Moléculaire d'Orsay Bât. 420,
Université de Paris-Sud, 91405 Orsay, France

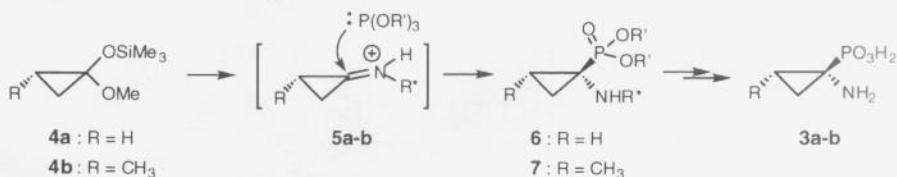

Received 27 March 2000; accepted 4 April 2000

Abstract

An easy and efficient one-pot reaction from readily available methylcyclopropanone acetal (2*S*)-4b gave the spirophosphonates 8a–b with excellent diastereoselectivity. These phosphonates, after catalytic hydrogenolysis and hydrolysis, furnished the enantiomerically pure (1*S*,2*S*)-1-amino-2-methylcyclopropanephosphonic acid 3b (analogue of (1*R*,2*S*)-*allo*-norcoronamic acid). © 2000 Elsevier Science Ltd. All rights reserved.

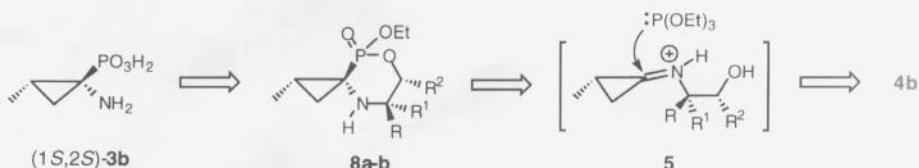
1. Introduction

The biologically active phosphonic acids **1** analogues of α -amino acids are finding increasing interest,^{1–4} due to the tetrahedral structure of phosphonic acid moiety, since they act as ‘transition-state analogues’.^{5,6} In recent years, 1-aminocyclopropanecarboxylic acids **2** (ACCs) have attracted special attention owing to their use as enzyme inhibitors as well as their incorporation in strained peptides.^{7,8} However, the aminocyclopropanephosphonic acids **3** did not receive the same attention compared to the acyclic aminophosphonic acids **1** and aminocyclopropane-carboxylic acids **2** (Scheme 1).



Scheme 1.

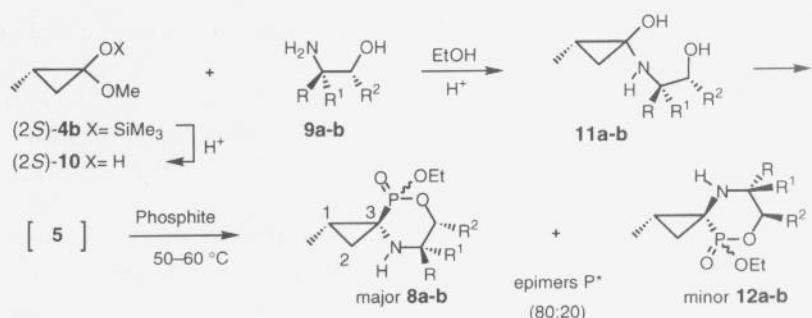
* Corresponding author. Fax: +33(1)69156278; e-mail: antfadel@icmo.u-psud.fr


To our knowledge only a few methods for the synthesis of this class of compounds **3** have been described in either racemic⁹ or optically active form.¹⁰

We have previously reported a simple and convenient synthesis of 1-aminocyclopropane-phosphonic acid (ACC analogue) **3a** ($R = H$), in three steps, from cyclopropanone acetal **4a**.¹¹ Similarly, for the preparation of optically active amino acids **2**,¹² we have recently used the same methodology to synthesize (1*S*,2*S*)-1-aminocyclopropanephosphonic acid **3b** [analogue of (1*R*,2*S*)-*allo*-norcoronamic acid **2b** ($R = CH_3$)]. This sequence occurred in three steps from the acetal (2*S*)-**4b**, via the iminium **5b** and aminophosphonates **7** in good overall yield (Scheme 2).¹³

Scheme 2.

In order to obtain alkylaminophosphonic acid (1*S*,2*S*)-**3b**, via the cyclic phosphonates **8a-b**, we decided in connection with our ongoing program to study the asymmetric addition of triethyl phosphite to the acetal (2*S*)-**4b**. These reactions should occur in the presence of 2-hydroxyamines **9a-b** via the iminium intermediate **5** (Scheme 3).


Scheme 3.

2. Results and discussion

The synthesis of (1*S*,2*S*)-1-amino-2-methylcyclopropanephosphonic acid **3b** was carried out starting from the cyclopropanone acetal (2*S*)-**4b**. This latter was easily obtained in two steps from commercially available (*S*)-3-hydroxy-2-methylpropionate.¹⁴ Thus, in a one-pot procedure, the hemiacetal **10** formed *in situ* from acetal (2*S*)-**4b** by acidic ethanolysis (EtOH, cat. TMSCl) reacted under acidic conditions with amines **9a-b** to give, via aminols **11a-b**,[†] the iminium intermediate **5**.[‡] The latter underwent phosphite addition to directly furnish a diastereoisomeric mixture of cyclic aminophosphonates **8** and **12** (Scheme 4). Our results are summarized in Table 1.

[†] A spiroamino acetal cannot be obtained by heating **11a**: A. Fadel, unpublished results.

[‡] The formation of a linked phosphite with the hydroxyl group of the amine moiety in **5**, then an intramolecular addition of the resulting phosphite on the iminium function, cannot be excluded.

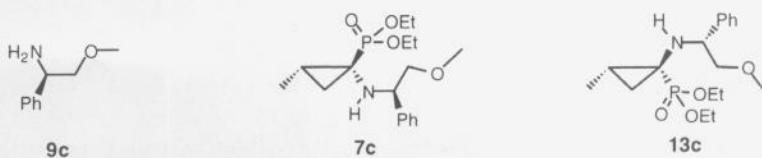
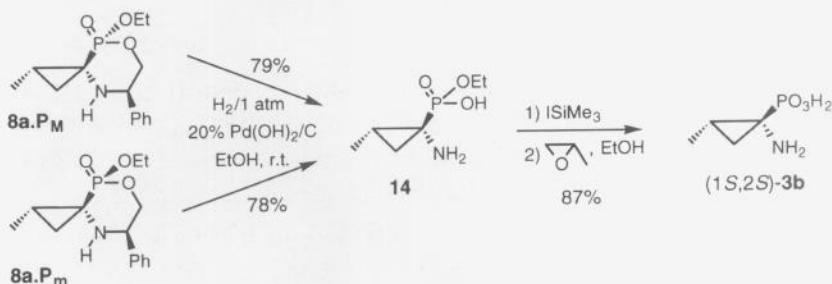

Scheme 4.

Table 1
Preparation of spiroaminophosphonates **8** and **12** from acetal (2S)-**4b**

entry	R	R ¹	amine 9	condition*	time (h)	yield (%)	product (ds ratio)
1	Ph	H	(<i>R</i>)- 9a	3 equiv.	113	65	8a : 12a (89 : 11)
2	Ph	H	(<i>R</i>)- 9a	2 equiv.	42	71	8a : 12a (89 : 11)
3	H	Me	9b	2 equiv.	90	36	8b : 12b (78 : 22)

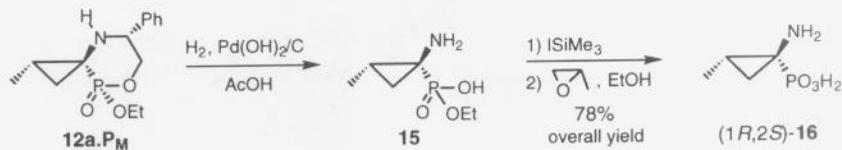
* All reactions of acetal (2S)-**4b** were carried out in the presence of 1.5 equiv. of amine **9**, 1.5 equiv. of P(OEt)₃ and AcOH in EtOH at 55°C.

The use of triethyl phosphite and amine **9a** gave a mixture of spirophosphates **8a** and **12a** in good yields with the *trans* isomers as the major products (ratio, 89:11) (Table 1, entries 1 and 2). With (–)-norephedrine **9b** under the same conditions, the yield and mixture ratios were lower (entry 3). These compounds **8a**, **8b**, **12a** and **12b**, obtained as a mixture of epimers at the phosphorus atom in an 80:20 (P*_{major}:P*_{minor}) ratio, were easily separated by flash chromatography. We observed that the protected hydroxyl amine **9c** gave, under the same conditions, the expected phosphonates **7c** and **13c** (85:15 ratio) in 39% yield, and the cyclic phosphonate **8a** (3% yield). The latter was probably formed by cyclization of **7c** under reaction conditions (Scheme 5).

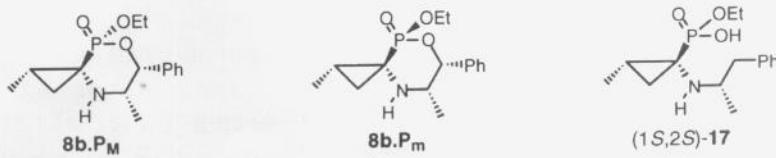


Scheme 5.

Assignment of the stereochemistry of these different compounds was based on $^3J_{P-H}$ coupling constants between the cyclopropane proton H-C₁ and the phosphorus atom. The observed values ($^3J_{PH} = 12.8$ Hz) were in agreement with reported values for the *cis* configuration,⁹ and with our previously reported results.¹³ These conclusions were supported by ^{13}C NMR spectra of the *cis* **12a** by the coupling constants between P and CH₃-C₁ ($^3J_{PC\,cis} = 5.2$ Hz). Thus, we assigned the *S* configuration on C₃ for the major **8a-b** and *R* for the minor **12a-b**. The phosphorus atom


configuration was arbitrarily assigned from the optimized energy determined by molecular mechanics (MM2) calculations of **8** and **12** with *R* configuration for the major epimers.

After separation the major **8a.P_M** and the minor epimer **8a.P_m**, which were assigned the same configuration *S* at C₃, were hydrogenolyzed separately to give the same compound **14** ($[\alpha]_D^{20} = +26.3$ (*c* 1, MeOH)) in 79% yield. Such epimerization on the phosphorus atom has already been reported by Royer et al. upon hydrogenolysis of cyclic aminophosphonate.¹⁵ This monoester was treated by trimethylsilyl iodide then with propylene oxide in ethanol to lead to enantiomerically pure (1*S*,2*S*)-(+)-1-amino-2-methylcyclopropanephosphonic acid **3b** (87% yield, mp = 220–222°C, $[\alpha]_D^{20} = +34$ (*c* 1, H₂O), $[\alpha]_D^{20} = +45$ (*c* 0.2, H₂O)). These values are in agreement with our previously reported results,¹³ and with the literature^{10b} for the enantiomer (1*R*,2*R*)-**3b**: mp = 245°C (decomp.), $[\alpha]_D^{20} = -46.4$ (*c* 0.2, H₂O). Its enantiomeric excess, determined from ¹⁹F NMR analysis of the corresponding Mosher amide,^{13,16} was found to be 98% (Scheme 6).


Scheme 6.

Probably the minor **12a.P_M**, isolated by chromatography, was hydrogenolyzed into the monoester **15**, which was treated by SiMe_3 followed by propylene oxide to furnish the *cis*-amino-phosphonic acid ((1*R*,2*S*)-**16**, $[\alpha]_D^{20} = +23$ (*c* 0.5, H₂O)) (Scheme 7).

Scheme 7.

In the same way, the major **8b.P_M** and **8b.P_m**, when hydrogenolyzed separately, gave the same monoester **17** in 86% yield (Scheme 8).

Scheme 8.

3. Conclusion

From the readily available methylcyclopropanone acetal (2*S*)-**4b**, we have developed an easy and efficient three-step synthesis of enantiomerically pure (1*S,2S*)-1-amino-2-methylcyclopropanephosphonic acid **3b**. This latter was obtained from the interesting cyclic phosphonate **8a–b** in high overall yield. This approach should constitute an efficient way for the synthesis of a wide variety of aminocyclopropanephosphonic acids.

4. Experimental

For general experimental information, see Fadel¹¹ or Fadel and Tesson.¹³

4.1. General procedure

To a solution of cyclopropanone acetal (2*S*)-**4b** (520 mg, 3 mmol) in EtOH (6 mL) was added one drop of TMSCl. After 5 min of stirring, chiral amine (*R*)-**9a** (550 mg, 4.5 mmol), AcOH (360 mg, 6 mmol), and P(OEt)₃ (750 mg, 4.5 mmol) were added successively. The mixture was stirred and heated at 55°C for 42 h. The reaction mixture was concentrated under vacuum, concentrated ammonia (2 mL) was added, and then the mixture was filtered through a 5 cm pad of silica gel and eluted with ether (60 mL). The filtrate was concentrated under vacuum to give crude phosphonates **8a** and **12a** obtained as two diastereoisomers in an 89:11 ratio. Purification by flash chromatography (FC) twice (eluent, EtOAc:CH₂Cl₂, 1:9→1:1, or ether) afforded 410 mg (49%) of (1*S,2S*)-**8a.P_M** as the major *trans*.major phosphorus atom, 80 mg (9.6%) of (1*S,2S*)-**8a.P_m** as the major *trans*.minor phosphorus atom, 39 mg (4.6%) of (1*R,2S*)-**12a.P_M** as the minor *cis*.major phosphorus atom, and 70 mg (8%) as a mixture.

4.1.1. (1*S,3S,4S*,7R*)-4-Ethoxy-1-methyl-7-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 4-oxide **8a.P_M**

$[\alpha]_D^{20} = +55.4$ (*c* 1, CHCl₃); $R_f = 0.22$ (ether); $R_T = 43.40$ min [Cydex B, 170°C (5 min) +1°C/min→180°C (1 h), 1 bar]; IR (neat): 3440, 3265, 1260 (P=O), 1046 (P–O); ¹H NMR (CDCl₃, 250 MHz): $\delta = 7.54$ –7.16 (m, 5H), 4.60–4.28 (m, 2H), 4.21 (dq, $^3J_{PH} = 1$ Hz, $J = 7.3$ Hz, 2H), 4.30–4.00 (m, 1H, CH–N), 2.05 (br s, NH), 1.80–1.50 (m, 1H_{cycle}), 1.39 (t, $J = 7.3$ Hz, 3H), 1.50–1.00 (m, 1H_{cycle}), 1.25 (d, $J = 5.9$ Hz, 3H, CH₃–C₁), 0.46 (ddd, $J = 5.4$ Hz, $J_{PH\ trans} = 6.8$ Hz, $J = 8.3$ Hz, 1H_{cycle}); ¹³C NMR (CDCl₃, 62.86 MHz): $\delta =$ [6 arom. C: 137.2, 128.7 (2C), 128.1, 126.4 (2C)], 70.0 (d, $^2J_{PC} = 9.0$ Hz, O–CH₂–CH), 61.5 (d, $^2J_{PC} = 6.7$ Hz, 1C), 58.8 (d, $^3J_{PC} = 5.3$ Hz, CH–N), 34.8 (d, $^1J_{PC} = 193.5$ Hz, C₃), 17.5 (C₁), 17.4 (C₂), 16.5 (d, $^3J_{PC} = 5.3$ Hz, CH₃–CH₂–O), 10.6 (CH₃–C₁); ³¹P NMR (CDCl₃, 101.25 MHz): $\delta = 18.61$; MS (70 eV); *m/z* (%): 282 (M⁺+1, 6), 281 (M⁺, 31), 252 (19), 171 (12), 104 (100), 103 (48); HRMS *m/z*: 281.1183 (calcd for C₁₄H₂₀NO₃P: 281.1180).

4.1.2. (1*S,3S,4R*,7R*)-4-Ethoxy-1-methyl-7-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 4-oxide **8a.P_m**

$[\alpha]_D^{20} = +32.6$ (*c* 0.75, CHCl₃); $R_f = 0.18$ (ether); $R_T = 38.42$ min [Cydex B, 170°C (5 min) +1°C/min→180°C (1 h), 1 bar]; IR (neat): 3435, 3265, 1260 (P=O), 1046 (P–O); ¹H NMR (CDCl₃, 250 MHz): $\delta = 7.40$ –7.20 (m, 5H), 4.70 (ddd, $J = 4.4$ Hz, $J = 9.7$ Hz, $J_{ab} = 14.4$ Hz, 1H), 4.47 (ddd,

$J = 3.7$ Hz, $J = 11.4$ Hz, $J_{ab} = 14.4$ Hz, 1H), 4.30–4.10 (m, 2H and CH-N), 2.32 (br s, NH), 1.55–1.00 (m, 2H_{cycle}), 1.31 (t, $J = 7.2$ Hz, 3H), 1.23 (d, $J = 5.8$ Hz, 3H, CH₃-C₁), 0.39 (ddd, $J = 5.9$ Hz, $J = 6.7$ Hz, $J = 8.4$ Hz, 1H_{cycle}); ¹³C NMR (CDCl₃, 62.86 MHz): δ = [6 arom. C: 137.8, 128.7 (2C), 128.0, 126.9 (2C)], 75.3 (d, $^2J_{PC} = 6.7$ Hz, O-CH₂-CH), 62.6 (d, $^2J_{PC} = 6.7$ Hz, O-CH₂), 58.6 (d, $^3J_{PC} = 5.2$ Hz, CH-N), 35.0 (d, $^1J_{PC} = 193.5$ Hz, C₃), 18.2 (C₁), 17.5 (C₂), 16.6 (d, $^3J_{PC} = 5.2$ Hz, O-CH₂-CH₃), 10.9 (CH₃-C₁); ³¹P NMR (CDCl₃, 101.25 MHz): δ = 19.86; MS (70 eV); *m/z* (%): 282 (M⁺+1, 3), 281 (M⁺, 15), 252 (12), 156 (11), 105 (13), 104 (100), 103 (31).

4.1.3. (1*S*,3*R*,4*R*^{*,7*R*})-4-Ethoxy-1-methyl-7-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 4-oxide 12*a*.**P_M**

$[\alpha]_D^{20} = +57$ (c 1.45, CHCl₃); $R_f = 0.28$ (ether); $R_T = 41.27$ min [Cydex B, 170°C (5 min) +1°C/min → 180°C (1h), 1 bar]; ¹H NMR (CDCl₃, 250 MHz): δ = 7.44–7.15 (m, 5H), 4.54–4.10 (m, 5H, CH₂-O, CH₂-O and N-CH), 2.15 (br s, NH), 1.41 (t, $J = 7.2$ Hz, CH₃-CH₂-O), 1.34 (d, $J = 5.8$ Hz, CH₃-C₁), 1.40–1.10 (m, 2H_{cycle}), 1.10–0.96 (m, 1H_{cycle}); ¹³C NMR (CDCl₃, 62.86 MHz): δ = [6 arom. C: 137.0, 128.8 (2C), 128.2, 126.5 (2C)], 76.8 (C₆), 61.3 (d, $^2J_{PC} = 6.2$ Hz, O-CH₂-CH₃), 58.1 (d, $^3J_{PC} = 4.8$ Hz, CH-N), 37.1 (d, $^1J_{PC} = 192.5$ Hz, C₃), 21.9 (C₁), 20.2 (d, $^2J_{PC} = 3.8$ Hz, C₂), 16.6 (d, $^3J_{PC} = 5.4$ Hz, O-CH₂-CH₃), 13.8 (d, $^3J_{PC\ cis} = 5.2$ Hz, CH₃-C₁); ³¹P NMR (CDCl₃, 101.25 MHz): δ = 17.43.

4.1.4. (1*S*,3*S*,4*S*^{*,6*R*,7*S*})-4-Ethoxy-1,7-dimethyl-6-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 4-oxide 8*b*.**P_M**

Following the procedure: Chiral acetal (2*S*)-**4b** (350 mg, 2 mmol), TMSCl (cat.), norephedrine (1*R*,2*S*)-**9b** (450 mg, 3 mmol), EtOH (7 mL) and P(OEt)₃ (500 mg, 3 mmol) gave, after heating at 55°C for 90 h and the usual work up, 500 mg of crude cyclic phosphonates as a mixture of **8b** and **12b** in a 78:22 ratio. Purification by FC (twice) afforded 115 mg (19.5%) of (1*S*,3*S*)-**8b**.**P_M** as the major *trans*.major phosphorous atom, 32 mg (5.5%) of (1*S*,3*S*)-**8b**.**P_m** as major *trans*.minor phosphorus atom, 32 mg (5.5%) of (1*S*,3*R*)-**12b**.**P_M** as minor *cis*.major phosphorus atom, and 25 mg (4%) as a mixture.

4.1.4.1. Data for (1*S*,3*S*)-**8b**.**P_M**. $[\alpha]_D^{20} = +40.4$ (c 1, CHCl₃); mp = 142.0–146.0°C; $R_f = 0.24$ (EtOAc:CH₂Cl₂, 15:85); IR (neat): 3296 (NH), 1248 (P=O), 1195, 1053 (P–O); ¹H NMR (CDCl₃, 250 MHz): δ = 7.42–7.18 (m, 5H), 5.55 (dd, $J = 2.0$ Hz, $^3J_{PH} = 2.5$ Hz, H-C₆), 4.24–3.95 (m, 2H, CH₂-O), 3.01 (dq, $J = 2.0$ Hz, $J = 7.4$ Hz, 1H-C₇), 2.35 (br s, NH), 1.78–1.53 (m, H-C₁), 1.29 (t, $J = 7.4$ Hz, 3H), 1.40–1.15 (m, 1H-C₂), 1.12 (d, $J = 6.3$ Hz, 3H, CH₃-C₁), 0.90 (d, $J = 7.4$ Hz, 3H, CH₃-C₇), 0.31 (ddd, $J = 5.2$ Hz, $J = 6.8$ Hz, $J = 8.8$ Hz, 1H-C₂); ¹³C NMR (CDCl₃, 62.86 MHz): δ = [6 arom. C: 137.8 (d, $^3J_{PC} = 5.2$ Hz, 1C), 128.3 (2C), 127.6 (1C), 124.9 (2C)], 87.5 (d, $^2J_{PC} = 8.6$ Hz, C₆), 61.3 (d, $^2J_{PC} = 6.7$ Hz, 1C), 53.3 (d, $^3J_{PC} = 4.7$ Hz, C₇), 31.4 (d, $^1J_{PC} = 188.2$ Hz, C₃), 19.9 (d, $^3J_{PC} = 5.8$ Hz, 1C), 16.5 (C₂), 16.45 (d, $^2J_{PC} = 5.2$ Hz, C₁), 12.2 (CH₃-C₇), 10.8 (CH₃-C₁); ³¹P NMR (CDCl₃, 101.25 MHz): δ = 21.36; MS (EI), *m/z* (%): 296 (M⁺+1, 5), 295 (M⁺, 5), 178 (100), 118 (82), 117 (71), 97 (52), 91 (56); HRMS, *m/z*: 295.1344 (calcd for C₁₅H₂₂NO₃P: 295.1337); anal. calcd for C₁₅H₂₂NO₃P: C, 61.01; H, 7.51; N, 4.74. Found: C, 60.73; H, 7.68; N, 4.52.

4.1.5. (1*S*,3*S*,4*R*^{*,6*R*,7*S*})-4-Ethoxy-1,7-dimethyl-6-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 4-oxide 8*b*.**P_m**

$[\alpha]_D^{20} = -12.1$; $[\alpha]_{365}^{20} = -30$ (c 0.35, CHCl₃); $R_f = 0.07$ (EtOAc:CH₂Cl₂, 15:85); IR (neat): 3300 (NH), 1245 (P=O), 1195, 1053 (P–O); ¹H NMR (CDCl₃, 250 MHz): δ = 7.45–7.15 (m, 5H), 5.83

(dd, $J=3.4$ Hz, $^3J_{\text{PH}}=3.9$ Hz, 1H-C₆), 4.17 (dq, $^3J_{\text{PH}}=8.3$ Hz, $J=7.3$ Hz, 2H), 3.25 (dq, $J=3.4$ Hz, $J=6.8$ Hz, 1H-C₇), 2.24 (br s, NH), 1.55–1.00 (m, 2H *c*-propyl), 1.33 (t, $J=7.3$ Hz, 3H), 1.17 (d, $J=6.0$ Hz, 3H, CH₃-C₁), 0.85 (d, $J=6.8$ Hz, 3H, CH₃-C₇), 0.45 (ddd, $J=4.9$ Hz, $J=6.8$ Hz, $J=8.3$ Hz, 1H-C₂); ¹³C NMR (CDCl₃, 62.86 MHz): δ =[6 arom. C: 137.6 (d, $^3J_{\text{PC}}=5.5$ Hz, 1C), 128.3 (2C), 127.6 (1C), 125.4 (2C)], 84.5 (d, $J_{\text{PC}}=6.9$ Hz, C₆), 62.5 (d, $^2J_{\text{PC}}=6.6$ Hz, 1C), 53.4 (d, $^3J_{\text{PC}}=4.1$ Hz, C₇), 33.0 (d, $^1J_{\text{PC}}=188.6$ Hz, C₃), 19.0 (d, $^3J_{\text{PC}}=2.6$ Hz, 1C), 18.0 (C₂), 16.6 (d, $^2J_{\text{PC}}=5.3$ Hz, C₁), 13.0 (CH₃-C₇), 12.1 (CH₃-C₁); ³¹P NMR (CDCl₃, 101.25 MHz): δ =22.99; MS (70 eV); *m/z* (%): 296 (M⁺+1, 2), 295 (M⁺, 4), 178 (93), 177 (21), 118 (100), 117 (69), 97 (44), 91 (27); HRMS *m/z*: 295.1340 (calcd for C₁₅H₂₂NO₃P: 295.1337).

4.1.6. (1*S*,3*R*,4*R*^{*},6*R*,7*S*)-4-Ethoxy-1,7-dimethyl-6-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 12*b*.**P_M**

From a mixture we can read: $R_f=0.15$ (EtOAc:CH₂Cl₂, 15:85); ¹H NMR (CDCl₃, 250 MHz): δ =7.45–7.15 (m, 5H), 5.58 (dd, $J=2.4$ Hz, $J=2.3$ Hz, 1H-C₆), 4.30–4.03 (m, 2H), 3.15 (dq, $J=2.3$ Hz, $J=7.3$ Hz, 1H-C₇), 1.56 (br s, NH), 1.40–1.30 (m, 1H_c-propyl), 1.33 (t, $J=6.8$ Hz, 3H), 1.32 (d, $J=6.3$ Hz, 3H, CH₃-C₁), 1.30–0.90 (m, 2H_c-propyl), 0.98 (d, $J=7.3$ Hz, 3H, CH₃-C₇); ¹³C NMR (CDCl₃, 50.29 MHz): δ =[6 arom. C: 137.8 (d, $^3J_{\text{PC}}=5.0$ Hz, 1C), 128.4 (2C), 127.7 (1C), 125.0 (1C)], 87.2 (d, $^2J_{\text{PC}}=9.0$ Hz, C₆), 61.0 (d, $^2J_{\text{PC}}=7.1$ Hz, 1C), 54.6 (d, $^3J_{\text{PC}}=3.9$ Hz, C₇), 32.3 (d, $^1J_{\text{PC}}=196.9$ Hz, C₃), 22.8 (d, $^2J_{\text{PC}}=4.0$ Hz, C₂), 19.1 (1C), 16.6 (d, $^2J_{\text{PC}}=5.9$ Hz, C₁), 13.8 (d, $^3J_{\text{PC}}_{\text{cis}}=5.9$ Hz, CH₃-C₁), 11.2 (CH₃-C₇).

4.2. Diethyl (1*S*,2*S*,1*R*)-1-(2-methoxy-1-phenylethylamino)-2-methylcyclopropanephosphonate 7*c*

Following the procedure: acetal **4b** (2 mmol) and amine **9c** (616 mg, 3 mmol) gave, after FC (twice), 185 mg (27%) of **7c**, 18 mg (3%) of spirophosphonate **8a.P_M** and 37 mg (5.2%) as a mixture of **7c**, **8a.P_M** and minor **13c**. $[\alpha]_D^{20}=-38.7$ (c 1, CHCl₃); $R_f=0.23$ (EtOAc:CH₂Cl₂, 1:1); $R_T=24.37$ min [Cydex B, 170°C (5 min) +1°C/min → 180°C (1 h), 1 bar]; IR (neat): 3430 (NH), 1240 (P=O), 1030 (P–O); ¹H NMR (CDCl₃, 250 MHz): δ =7.45–7.15 (m, 5H), 4.20 (m, 1H), 4.13–3.77 (m, 4H), 3.60–3.25 (m, 2H), 3.29 (s, 3H), 2.10 (br s, NH), 1.53–1.05 (m, 2H_{cycle}), 1.23 (t, $J=7.3$ Hz, 3H), 1.21 (t, $J=7.3$ Hz, 3H), 0.98 (d, $J=6.6$ Hz, CH₃-C₂), 0.60 (m, 1H_c-propyl); ¹³C NMR (CDCl₃, 62.86 MHz): δ =[6 arom. C: 142.5 (1C), 127.9 (2C), 127.8 (2C), 127.0 (1C)], 77.0 (CH₂-CH-N), 61.65 (d, $^3J_{\text{PH}}=6.2$ Hz, 1C), 61.6 (d, $^3J_{\text{PH}}=6.2$ Hz, 1C), 60.3 (CH-N), 58.8 (CH₃-O), 35.8 (d, $^1J_{\text{PC}}=207.8$ Hz, C₁), 18.8 (C₃), 18.4 (d, $^2J_{\text{PC}}=4.3$ Hz, C₂), 16.4 (1C), 16.3 (1C), 11.9 (CH₃-C₂); ³¹P NMR (CDCl₃, 101.25 MHz): δ =28.93; MS (70 eV); *m/z* (%): 341 (M⁺, 1), 296 (27), 295 (29), 172 (87), 171 (41), 103 (100), 102 (38), 91 (36); HRMS *m/z*: 341.1753 (calcd for C₁₇H₂₈NO₄P: 341.1756); anal. calcd for C₁₇H₂₈NO₄P: C, 59.81; H, 8.27; N, 4.01. Found: C, 59.62; H, 7.48; N, 4.23.

4.3. Ethyl (1*S*,2*S*)-1-amino-2-methylcyclopropanephosphonate 14

Following a reported procedure:¹¹ cyclic phosphonate **8a.P_M** (197 mg, 0.7 mmol), EtOH (4 mL) and 20% Pd(OH)₂/C (Pearlman's catalyst, 90 mg) under H₂ (1 atm) gave, after 6 h and FC (eluent 50:50, MeOH:EtOAc), 99 mg (79%) of (1*S*,2*S*)-**14** as a white solid. $[\alpha]_D^{20}=+26.3$ (c 1, MeOH); mp=169.7°C (decomp.); $R_f=0.21$ (MeOH:CH₂Cl₂, 1:1); IR (neat): ¹H NMR (D₂O, HOD, 4.6 ppm, 250 MHz): δ =3.74 (dq, $^3J_{\text{PH}}=6.7$ Hz, $J=7.1$ Hz, 2H), 1.30–1.03 (m, 1H), 1.03 (t, $J=7.1$ Hz, 3H), 1.03–0.80 (m, 1H_{cycle}), 0.95 (d, $J=6.3$ Hz, 3H), 0.39 (ddd, $J_{\text{trans}}=6.6$ Hz,

$J_{\text{gem}} = 6.4$ Hz, $^3J_{\text{PH trans}} = 6.8$ Hz, 1H); ^{13}C NMR (D_2O , 62.86 MHz): $\delta = 61.5$ (d, $^2J_{\text{PC}} = 5.7$ Hz, 1C), 32.1 (d, $^1J_{\text{PC}} = 195.4$ Hz, C₁), 16.7 (C₃), 16.1 (d, $^2J_{\text{PC}} = 5.2$ Hz, C₂), 14.9 (1C), 10.9 (1C); ^{31}P NMR (D_2O , 101.25 MHz): $\delta = 19.29$.

4.4. Ethyl (1S,2S,1'S)-2-methyl-1-(1'-methyl-2-phenylethylamino)cyclopropanephosphonate 17

Following a reported procedure:¹¹ cyclic phosphonate **8b**.**P_M** (60 mg, 0.2 mmol), AcOH (2 mL) and 20% $\text{Pd}(\text{OH})_2/\text{C}$ (25 mg), under H_2 (1 atm) gave, after 4 h and FC (eluent 20:80, MeOH:CH₂Cl₂), 51 mg (86%) of (1S,2S)-**17**. $[\alpha]_{\text{D}}^{20} = +13.7$ (*c* 0.9, MeOH); IR (neat): 3600–3200 (NH₃⁺, OH), 2750 (P–OH), 1602, 1216 (P=O), 1052 (P–O); ^1H NMR (d_4 -MeOH, 4.78 ppm, 200 MHz): $\delta = 7.30$ –7.00 (m, 5H), 4.28–4.02 (m, 1H), 3.85 (dq, $^3J_{\text{PH}} = 7.2$ Hz, $J = 7.3$ Hz, 2H), 3.21 (dd, $J = 3.8$ Hz, $J = 12.6$ Hz, 1H_{benzyl}), 2.43 (dd, $J = 10.5$ Hz, $J = 12.6$ Hz, 1H_{benzyl}), 1.67 (m, 1H–C₂), 1.44–1.20 (m, 1H_{c-propyl}), 1.20 (d, $J = 6.4$ Hz, 3H, CH₃–C₂), 1.10 (t, $J = 7.3$ Hz, 3H, CH₃–CH₂–O), 1.07 (d, $J = 7.0$ Hz, 3H), 0.58 (ddd, $J = 6.2$ Hz, $J = 6.4$ Hz, $J = 6.6$ Hz, 1H_{cycle}); ^{13}C NMR (d_4 -MeOH, 49 ppm, 62.86 MHz): $\delta = [6 \text{ arom. C: } 138.1 \text{ (1C), } 130.4 \text{ (2C), } 129.8 \text{ (2C), } 128.1 \text{ (1C)], } 61.9 \text{ (d, } ^2J_{\text{PC}} = 6 \text{ Hz, 1C), } 57.5 \text{ (CH-N), } 40.9 \text{ (1C, benzyl), } 39.0 \text{ (d, } ^1J_{\text{PC}} = 190.0 \text{ Hz, C}_1\text{), } 17.8 \text{ (1C), } 17.3 \text{ (d, } ^2J_{\text{PC}} = 6.1 \text{ Hz, C}_2\text{), } 17.0 \text{ (1C), } 16.4 \text{ (C}_3\text{), } 12.1 \text{ (CH}_3\text{-C}_2\text{); } ^{31}\text{P}$ NMR (d_4 -MeOH, 101.25 MHz): $\delta = 12.53$.

4.5. (1S,2S)-1-Amino-2-methylcyclopropanephosphonic acid 3b

Trimethylsilyl iodide (300 mg, 1.5 mmol) was added dropwise to a stirred solution of the monoethyl phosphonate **14** (90 mg, 0.50 mmol) in CH₂Cl₂ (5 mL), and stirring was continued at room temperature for 30 min. Organic solvents were removed under vacuum, and a mixture of EtOH (3 mL) was added with stirring. After complete precipitation, the pure aminophosphonic acid **3b** was filtered off, giving after crystallization from (ϵ .H₂O, MeOH/Et₂O) 65 mg (86%) as a white solid (dried under high vacuum). $[\alpha]_{\text{D}}^{20} = +34$ (*c* 1, H₂O), $[\alpha]_{\text{D}}^{20} = +45$ (*c* 0.2, H₂O) [lit.^{10b} for an enantiomer (1*R*,2*R*)-**3b** $[\alpha]_{\text{D}}^{20} = -46.4$ (*c* 0.2, H₂O); mp = 220–222°C (decomp.), lit.⁹ mp = 224–225°C (decomp.)]; $R_f = 0.41$ (H₂O:MeOH, 1:9); IR (KBr): 3600–3100 (OH and NH₃⁺), 1190 (P=O), 1050 (P–O); ^1H NMR (D₂O, 250 MHz): $\delta = 1.28$ (dd, $J_{\text{cis}} = 9.4$ Hz, $J_{\text{trans}} = 6.8$ Hz, $J = 6.4$ Hz, $^3J_{\text{PH cis}} = 12.7$ Hz, 1H–C₂), 1.06 (ddd, $J_{\text{cis}} = 9.4$ Hz, $J_{\text{gem}} = 6.4$ Hz, $^3J_{\text{PH cis}} = 12.7$ Hz, 1H), 1.00 (d, $J = 6.4$ Hz, 3H, CH₃–C₂), 0.58 (ddd, $J_{\text{trans}} = 6.8$ Hz, $J_{\text{gem}} = 6.4$ Hz, $^3J_{\text{PH trans}} = 6.9$ Hz, 1H); ^{13}C NMR (D₂O, 62.86 MHz): $\delta = 33.6$ (d, $^1J_{\text{PC}} = 192.5$ Hz, C₁), 16.0 (C₃), 14.8 (C₂), 10.9 (CH₃–C₂); ^{31}P NMR (D₂O, 101.25 MHz): $\delta = 13.36$; anal. calcd for C₄H₁₀NO₃P (151.1029): C, 31.80; H, 6.67; N, 9.27. Found: C, 31.88; H, 6.32; N, 8.88.

4.6. (1*R*,2*S*)-1-Amino-2-methylcyclopropanephosphonic acid 16

From minor **12a** following the procedure used for (1*S*,2*S*)-**3b**, we obtained 10 mg (78% overall yield) of (1*S*,2*S*)-**16**. $[\alpha]_{\text{D}}^{20} = +23$ (*c* 0.5, H₂O); mp = 234–236°C (decomp.); $R_f = 0.41$ (H₂O:MeOH, 1:9); ^1H NMR (D₂O, 250 MHz): $\delta = 1.23$ (dd, $J_{\text{cis}} = 11.8$ Hz, $J_{\text{trans}} = 5.1$ Hz, $J = 6.4$ Hz, $^3J_{\text{PH trans}} = 6.8$ Hz, 1H–C₂), 1.04 (d, $J = 6.4$ Hz, 3H, CH₃–C₂), 0.98 (ddd, $J_{\text{trans}} = 5.1$ Hz, $J_{\text{gem}} = 6.2$ Hz, $^3J_{\text{PH cis}} = 10.8$ Hz, 1H), 0.79 (ddd, $J_{\text{cis}} = 11.8$ Hz, $J_{\text{gem}} = 6.2$ Hz, $^3J_{\text{PH trans}} = 6.2$ Hz, 1H); ^{13}C NMR (D₂O, 62.86 MHz): $\delta = 34.0$ (d, $^1J_{\text{PC}} = 191.6$ Hz, C₁), 17.9 (C₃), 16.7 (C₂), 12.6 (d, $^3J_{\text{PC cis}} = 3.4$ Hz, CH₃–C₂); ^{31}P NMR (D₂O, 101.25 MHz): $\delta = 11.48$; in agreement with our previously reported data.¹³

References

1. For a comprehensive review, see: Dhawan, B.; Redmore, D. *Phosphorus, Sulfur Relat. Elem.* **1987**, *32*, 119–144.
2. Kafarski, B.; Lejczak, B. *Phosphorus, Sulfur and Silicon* **1991**, *63*, 193–215.
3. De Lombaert, S.; Blanchard, L.; Tan, J.; Sakane, Y.; Berry, C.; Ghai, R. D. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 145–150.
4. Atherton, F. R.; Hassall, C. H.; Lambert, R. W. *J. Med. Chem.* **1986**, *29*, 29–40, and references cited therein.
5. Wolfenden, R. *Annu. Rev. Biophys. Bioeng.* **1976**, *5*, 271–306; *Chem. Abstr.* **1976**, *85*, 73952b.
6. Jacobsen, N. E.; Bartlett, P. A. *J. Am. Chem. Soc.* **1981**, *103*, 654–657.
7. For some recent reviews, see: (a) Stammer, C. *Tetrahedron* **1990**, *46*, 2231–2254; (b) Alami, A.; Calmes, M.; Jacquier, R. *Bull. Soc. Chim. Fr.* **1993**, *130*, 5–24.
8. (a) Burgess, K.; Kwok-Kan, H.; Destradi, M. S. *Synlett* **1994**, 575–583; (b) Jimenez, J. M.; Rife, J.; Ortúñoz, R. M. *Tetrahedron: Asymmetry* **1996**, *7*, 537–558.
9. For a synthesis of racemic substituted α -aminocyclopropanephosphonic acid, see: Groth, U.; Lehmann, L.; Richter, L.; Schöllkopf, U. *Liebigs Ann. Chem.* **1993**, 427–431.
10. For an optically active synthesis, see: (a) Yamazaki, S.; Takada, T.; Moriguchi, Y.; Yamabe, S. *J. Org. Chem.* **1998**, *63*, 5919–5928. (b) Hercouet, A.; Le Corre, M.; Carboni, B. *Tetrahedron Lett.* **2000**, *41*, 197–199.
11. Fadel, A. *J. Org. Chem.* **1999**, *64*, 4953–4955.
12. (a) Fadel, A. *Synlett* **1993**, 503–505; (b) Fadel, A.; Khesrani, A. *Tetrahedron: Asymmetry* **1998**, *9*, 305–320, and references cited therein.
13. Fadel, A.; Tesson, N. *Eur. J. Org. Chem.* **2000**, in press.
14. Fadel, A.; Canet, J.-L.; Salaün, J. *Synlett* **1990**, 89–91, see also Ref. 12b.
15. Maury, C.; Wang, Q.; Gharbaoui, T.; Chiadmi, M.; Tomas, A.; Royer, J.; Husson, H.-P. *Tetrahedron* **1997**, *53*, 3627–3636.
16. Mosher, H. S.; Dale, J. A.; Dull, D. L. *J. Org. Chem.* **1969**, *34*, 2543–2549.